Getting Started with Storm and Sanitary Drainage Analysis using SWMM5 (Beta-E 01/23/04)

Robert Pitt and Alex Maestre Department of Civil and Environmental Engineering University of Alabama Tuscaloosa, AL 35226

April 18, 2005

Introduction	1
Starting SWMM5	2
"Hello World" Pat Avenue Storm Drainage Design Example	3
Project Information	3
Creating a New Project	5
Observing the Results	
Long-term Continuous Simulation	
"Hello World" Pat Avenue Sanitary Drainage Design Example	
Creating the Project	
References	

This chapter comprises a step-by-step example for a simple storm drainage and sanitary sewer design (PAT Avenue), prepared by Robert Pitt and Alex Maestre, of the Department of Civil Engineering at the University of Alabama.

Introduction

The US EPA National Risk Management Laboratory and CDM Inc., are rewriting the Storm Water Management Model (SWMM) software. The original version of this software was developed between 1969-1971, with Metcalf and Eddy (M&E) of Palo Alto, CA, the main contractor to develop the different modules in the program. M&E subcontracted some of the modules to Water Resources Engineers of Walnut Creek, CA (WRE) and the University of Florida (UoF). WRE (now part of CDM), developed the original RUNOFF, RECEIV and GRAPH models. M&E developed the RUNOFF quality and STORAGe/Treatment routines. UoF developed the TRANSPORT module. In 1973, WRE developed the TRANS model that later in 1977 was modified to EXTRAN (Larry Roesner). Also in 1977, William James developed the minicomputer version known as FASTSWMM and SWESWMM. In 1984, Computational Hydraulics Institute (CHI), the company formed by William James, developed the first user-friendly microcomputer version known as PCSWMM. In 1988, version 4 of SWMM was released by EPA and included some of the enhancements developed by PCSWMM. Since that time, the UoF (Wayne Huber and Jim Heaney), University of Guelph (where William James taught) and Oregon State University (Wayne Huber) have been improving version 4, with the release of version 4.4gu in 1999 (James 2002).

SWMM5 was developed for many reasons: the previous versions were developed in DOS-based FORTRAN over more than a 30 year period with different levels of documentation. The development of the Windows environment and object oriented programming techniques improved programming capabilities and graphical user interfaces. One advantage of the new model is that only a single file is needed, and not multiple modules, for a single simulation. A single file can now be created that contains RUNOFF, TRANSPORT and/or EXTRANS at the same time. SWMM5 uses the same environment that EPANET uses, assigning the values to the objects used during the simulation. Other reasons for the new SWMM version are its ability to eventually develop routines for modeling stormwater control practices, to improve the routing procedures of water quality in the model, and to create the possibility to simulate Real Time Control by manipulating control structures (EPA 2002).

Starting SWMM5

The model can be downloaded by going to the EPA web site:

http://www.epa.gov/ednnrmrl/swmm/

Copy the program to your computer and follow the installation instructions. To start the program, go to the shortcut located on your desktop, or select *start/programs/SWMM5*.

Figure 1

To start the program, go to the shortcut located on your desktop, or select *start/programs/SWMM5*. The SWMM 5 environment consists of seven areas: Main Menu, Main Toolbar, Drawing Element Toolbar, Data and Map Browser, SWMM controls, Properties, and the Drawing Area.

Figure 2. SWMM5 Environment

"Hello World" Pat Avenue Storm Drainage Design Example *Project Information*

This is a very simple example intended to show the user how to access the main components of SWMM5 and to create and run a simple model. After going through this example, it should be much easier to follow more complex examples, or to enter site-specific information for a larger and more complex site.

Pat Avenue is located in Birmingham, AL. It consists of three subcatchments, three junctions (nodes) and two conduits (pipes) in a residential area. The water collected during a rainstorm is discharged to a main sewer trunk. Figure 3 shows the watershed delineation for Pat Avenue.

Figure 3. PAT Avenue subcatchments, joints and conduits (in this example, another link, 1003, was created to allow all subwatershed flows to be combined before the outfall junction, now 103).

The description of each subcatchment is shown in Table 1.

SUBCATCHMENT	Area (Acres)	Width (ft)	Slope (ft/ft)	Percentage imperviousness	n Manning impervious	n Manning pervious
1001	1.067	98.3	0.084	54	0.040	0.410
1011	1.087	74.5	0.093	54	0.040	0.410
1021	1.431	109.0	0.072	54	0.040	0.410

Table 1. Pat Avenue Subcatchment information:

SUBCATCHMENT	Horton maximum infiltration rate	Horton minimum infiltration rate	Horton decay coefficient (1/sec)	Horton recovery coefficient	Maximum volume (inches)
	(in/hr)	(in/hr)		(fraction)	
1001	1	0.1	0.002	0.001	0*
1011	1	0.1	0.002	0.001	0
1021	1	0.1	0.002	0.001	0

* A zero value for maximum volume disables the maximum volume function

The three subcatchments are similar in all the parameters except area, slope and width. The width of the watershed can be calculated as the ratio of the area to the longest flow path in the watershed. This is a critical attribute that affects the watershed time of concentration. The infiltration parameters are the same for all three subcatchments. The junction properties are shown in Table 2.

Table2. Pat Avenue Junction Information:

JUNCTION	Invert Elevation (ft)	Maximum Depth (ft)	Initial Depth (ft)	Surcharge Depth (ft)	Ponded Area (ft²)
100	791	10	0	0	0
101	769	10	0	0	0

102		753	10	0	0	0
103 (Outfa	ll)	745	n/a	0	0	0

The invert elevation corresponds to the elevation of the corresponding junction. The maximum depth is the distance from the bottom of the junction to the ground surface. The surcharge depth is the additional water depth above the ground surface used to store water during surcharge conditions. The ponded area is the surface area of the water accumulated during the surcharge. The conduit information is shown in Table 3.

Table 3. Pat Avenue Conduit Information:

CONDUIT	Shape	Diameter (ft)	Length (ft)	n Manning	Inlet invert height offset (ft)
1000	Circular	1	300	0.013	0.5
1001	Circular	1	300	0.013	0.5
1003	Circular	1	100	0.013	0.5

CONDUIT	Outlet invert height offset (ft)	Initial flow (cfs)	Entry loss coefficient	Exit loss coefficient	Average loss coefficient
1000	0.5	0	0	0	0
1001	0.5	0	0	0	0
1003	0.5	0	0	0	0

There are two circular concrete pipes, each 1 ft in diameter (the minimum pipe diameter allowed by the local regulations). The length of each pipe is 300 ft. There is no initial flow in the pipe and entrance and exit losses are negligible. There is no flap (tidal) gate at the end on the pipe.

Figure 4. PAT Avenue's joints and conduits characteristics.

Creating a New Project

The first step is to name the project. Click on the data browser tab and select the *Title/Notes* option. In the properties area, a green plus sign will appear. Click on the green plus to add a title to the project. After assigning the title, you

will be able to use the remaining options. The red minus sign will delete the object, and the yellow finger will edit the object. The remaining options will move up, move down or order the elements in the properties box.

Return to the data browser and click on the *options* category. The edit option will be active in the properties area. In order to display the properties, or click on the desired option. Double-click the *general* button to display the properties of the project. In the general tab, select the desired units. In this case they are in US. customary units. Select flow units in cubic feet per second (cfs). The infiltration model used is Horton, but the Green Ampt and NRCS Curve Number procedures are also available. The routing model used for this example is the kinematic wave option, a continuity equation for lateral flow in an unsteady channel. In the dynamic wave option (important for unsteady flows used for evaluating CSOs and SSOs, for example) all the Saint Venant equations are used. Chow (1988) presents a description of the two models in the distributed flow routing chapter.

😚 EPA SWMM 5							💶 🗗 🔀
File Edit View Proj	ect Repor	t Window	Help				
0 🗲 🖬 🎒 🎙	a #4 🕨	?{] 🕅		▶ द ⊕ Q Q E			
Image: Categories Data Map Categories Title/Notes Options Image: Meteorology Hydrology Hydrology Hydrology Image: Hydrology Image: Curves Time Series Time Series Time Patterns Map Labels Options General Dates Time Steps Dynamic Wave Interface Files	▲ # ↓ ↓ ☆ ☆ ☆ ☆ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	?{] ₩	i Z 🔐 🔁 🗼	Imulation Options Seneral Dates Time Steps I Flow Units C CMS C C CFS CMS MGD MLD Routing Method C Uniform Flow Kinematic Wave C Dynamic Wave OK Ca	Dynamic Wave Files		
Auto Lepeth Off		100%	V V- 1996 49 704 9 0	<u>م</u>			
Auto-Length Off	urs	100%	A, 1: -1000.40, 7813.0	2			
📲 start 🛛 💈	00	· 🔘 🛛	Inbox - Microsoft Ou	E:\current files\CLAS	Getting Started with	😌 EPA SWMM 5	🕑 🗗 🧶 🧶 🥵 🔁 8:32 PM

Continuity Equations:

2 1	
Conservation Form	$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = 0$
Nonconservation Form	$V\frac{\partial y}{\partial x} + y\frac{\partial V}{\partial x} + \frac{\partial y}{\partial t} = 0$

Momentum Equations:

Conservation Form	$\frac{1}{A}\frac{\partial Q}{\partial t} + \frac{1}{A}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + g\frac{\partial y}{\partial x} - g(S_o - S_f) = 0$				
	$-g(S_o-S_f)=0$	Kinematic Wave			
Nonconservation Form	$g\frac{\partial y}{\partial x} - g(S_o - S_f) = 0$	Diffusion Wave			
	$\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} + g \frac{\partial y}{\partial x} - g(S_o - S_f) = 0$	Dynamic Wave			

In this case, no ponding is allowed at the manholes. Uncheck this option in the general tab and click "OK". Now double-click the *dates* tab on the same window. Assume this simulation started on January 1, 2003 at 00:00 and had a 24 hour duration, in Birmingham Alabama. The analysis will end on January 2, 2003. The number of antecedent dry days is zero (it rained immediately before this simulated event). Click OK when finished.

Double-click on the *Time Steps* tab. Select the time steps according to the rain file. In this example, the rain file has data every 30 minutes. There are no dry weather processes simulated, but the default 1 hour time step needs to be selected. Select a 5-minute routing time step and a 30-minute reporting time step. The *dynamic wave* and *files* tabs are not used in this example. Click OK when finished.

😚 EPA SWMM 5 - PatAve	eStor	m.inp				. 7 ×
File Edit View Project R	eport	Window Help				
D 🗲 🖬 🎒 🐴		?{ 🕅 🗖 🗅 🖆 🖶 🚺	LZ⊕QQI			
Data Map Categories Options Hydrology Hydrology Aain Gages Subcatchments Aquifers Hydraulics Nodes Junctions Outrals Dividers Storage Unit Conduits Pumps Orifices Weirs Viers Conduits Conduits Conduits Conduits Outrals Orifices Viers Conduits Dates Time Steps Dynamic Wave Interface Files		Study Area Map	Simulation Options General Dates Time Steps C Runoff Time Steps: Wet Weather Dry Weather Routing Time Step: Reporting Time Step: OK Car	bynamic Wave Files		
Auto-Length Off CPS		100% A,T: -1000.40, 0790	.00			
🐉 start 🔰 😂 🔯	e	🐃 🧕 Inbox - Microsoft Ou	E:\current files\CLAS	Getting Started with	😌 EPA SWMM 5	🔟 🎒 💟 🧐 🖏 🏪 9:22 PM

Now you will import a time series with the precipitation for a 24-hour type II event, corresponding to Birmingham, AL. In the data browser, select the *Time Series* option and in the properties area add a new series by clicking on the green "+" key. In the name field, assign the name "TypeII69" without quotes or spaces. Now press the *load* button and select the TypeII 6_9.dat file. This is a type II rain distribution having a total of 6.9 inches in 24 hours, the "25-yr" reoccurrence event for Birmingham, AL. Click the *view* button to observe the 24-hour hyetograph. Close the window and click OK to accept the time series. It must be noted that this rain file only has data for 30-minute increments, likely too coarse for accurate analyses for small urban areas where the inlet times of concentrations may be about 5 minutes. A rain file having 5-minute time increments would therefore be more accurate and desirable. The example is an exercise in using the model and should not be taken as an absolute evaluation.

😚 EPA SWMM 5			- - X
File Edit View Project	Report	Window Help	
0 🚅 🖬 🎒 🖬 🖉	14 🕨	?! 經 🖩 🛽 🖻 📕 🕨 🖾 🕁 🔍 의 其	
Data Map Categories Title/Notes Options Hydrology Hydrology Categories Title States Hydrology Hydrology Curves Time Series Time Patterns Map Labels		Study Area Map Time Series Editor Name Typeli69 Description Type I cumulative 6.9 Inch rain Date Time View Open a Time Series Look in: M10 storm sewer system design F	Contents
		With Recent Documents Sediment scour in pipes Wy Recent Documents Tuscaloosa 4 months of rains.dat Desktop TypeII 5_3.dat Wy Documents TypeII 6_0.dat My Documents TypeII 6_9.dat My Documents TypeII 6_4.dat My Documents TypeII 6_4.dat My Documents TypeII 6_9.dat My Network Time series files ('DAT)	Dis: Flaint Type II 65 inco train 11-2003 0.3000 11-2003 0.3000 11-2003 0.3000 11-2003 0.3000 11-2003 0.3000 11-2003 0.3000 11-2003 0.3000 11-2003 0.3000 11-2003 0.3000 11-2003 3.0000 0.286H3 11-2003 3.0000 0.384H32 11-2003 5.0000 11-2003 5.0000 11-2003 5.0000 11-2003 5.0000 11-2003 5.0000 11-2003 5.0000 11-2003 10.000 11-2003 10.000 11-2003 10.000 11-
Auto-Length Off CF	s 🖻	100% X,Y: -1886.48, 5626.04	
🛃 start 🔰 😂	0	Inbox - Microsoft Out E:\current files\CLAS EPA SWMM 5	🚔 🧿 💟 🧶 🗞 🏪 3:09 PM

Now go to the main menu and select *project*, *defaults*. This option will create the default options for the subcatchments, conduits and junctions in the project. Click on the *subcatchments* tab. Assign 54 as the percentage imperviousness, the Manning's coefficient for pervious areas is 0.410 and for impervious areas is 0.040. Assign depression storage values for both pervious (0.50 inches) and impervious areas (0.25 inches; mostly flat roofs having large depression storage amounts). Use 25 as the percentage of zero imperviousness (to account for pitched roofs that have no depression storage). The infiltration method by default is the Horton equation. Select this method. Three dots will appear. Click on the three buttons. Assign the values indicated in Table 1. Click OK to accept.

Select the *Nodes/Links* tab. Assign 300 as the length of each pipe. Select conduit geometry *circular*. Three dots will appear when you select this option. Click on the three dots to edit the pipe characteristics. Assign a maximum depth of 1. This will indicate that the pipe is 1 ft in diameter according to the units indicated in the *flow unit* field. The pipes are all reinforced concrete. Select a Manning's coefficient of 0.013 for concrete pipes. The flow units are in cubic feet per second and the routing system in this example is kinematic wave. Click OK to accept the default values. You can now start drawing the different elements for the project.

The second button in the SWMM elements is the subcatchment element. Click on it to start drawing the first watershed. A pencil will appear in the drawing area. Click the left mouse button and trace the watershed 1001 similar to that presented in Figure 3. Use the right mouse button to close the watershed drawing.

In the main toolbar, use the selector, the black arrow to select elements on the main toolbar. Now click on the blinking square inside the watershed. Assign the name, description and tag fields "1001", without the quotes. Complete the area, width and slope information for this watershed from Table 1. Check that the infiltration information is correct and close the window.

😚 EPA SWMM 5 - PatA	veStor	m.inp					- - X							
File Edit View Project	Report	Window	Help											
D 🚅 🖬 🎒 🖪 👭		?{] 腰 [ג÷€∢ מָצ										
Data Map	0	Stud	ly Area Map											
Categories				Subcatchment 1001			×							
- Options	0			Property	Value									
	∇			Name	1001									
E Hydrology	\diamond			X-Coordinate	-394.74									
Subcatchments	s 🖻			Y-Coordinate	6356.83									
Aquifers	н			Description	1001									
Hydraulics Hydraulics	G			Tag	1001									
Curves	Ø			Raingage	*									
Time Series				Outlet	*									
Map Labels			11111	Area	1.067									
		/////	Width	98.3										
				% Slope	0.084									
				% Imperv	54									
			N-Imperv	0.040										
												N-Perv	0.410	
+ - 1				Dstore-Imperv	0.25									
± ∓ ≵↓				Detore Bery	0.20									
Subcatchments				0 Zana kanami	0.50									
1001				%Zero-Imperv	25									
				Suparea Routing	OUILEI									
				Infiltration	HORTON									
				Groundwater	NO									
				Land Uses	0									
				Curb Length	0									
					Dunne Ed. fey Links									
					Press F1 for Help									
Auto Length Off		100%	V V- 383 07 0403 00	2										
Auto-Length Off CPS		100%	A,T: -303.97, 9432.39	-										
🐉 start 🔰 😂 🧕		20 Ir		E:\current files\CLAS	👜 Getting Started with	😌 EPA SWMM 5	🔟 🚔 💙 🤣 🏷 🏪 8:56 PM							

Select the *junction* button located below the *subcatchment* button. Locate the junction in the far East corner of the subcatchment 1001, outside the subcatchment. Use the selector to display the properties of the junction. Double click on the junction to display the properties. Assign "100" without quotes in the name, description and tag fields. There are no external or dry weather flow in this junction. The invert elevation of this junction is located 10 ft below the ground surface. Use 791 to assign the elevation of the junction and 10 as the maximum depth. Initial depth, surcharge depth and ponded area are zero in this case. Close the window.

😪 EPA SWMM 5 - PatA	veStor	m.inp				- 7 ×
File Edit View Project	Report	Window Help				
0 🛩 🖬 🎒 🕅 👭		?{] ₩ ■ Σ 🗗 🖥 📐	$\triangleright \mathbf{Z} \oplus \mathbf{Q} \in \mathbf{Z}$			
Data Map	0	😌 Study Area Map				
Categories			1			
Itle/Notes			Junction TOU			
+ Meteorology	$\overline{\nabla}$		Property	Va	alue	
Hydrology			Name	10	0	
Rain Gages			X-Coordinate	56	7.61	
Subcatchments			Y-Coordinate	650	60.93	
Aquiters	H		Description	10	0	
E-Nodes	P		Tao	10	- 0	
Junctions			Informe	10		
Outfalls			iniows	NO	,	
Storage Linit		111112	Invert El.	79	1	
± Links	т		Maximum Depth	10		
- Transects	-		Initial Depth	0		
Controls			Surcharge Depth	0		
+ Guaity			Ponded Area	0		
				Press F1 for	r Help	
Auto-Length Off CFS		100% X,Y: 10601.00, 8430.7	2			
🐉 start 🔰 😂 🖸	6	» 🙆 Inbox - Microsoft Ou	E:\current files\CLAS	Getting Started with	😌 EPA SWMM 5	🖥 💟 🧐, 🏷 👫 🛛 8:58 РМ

Double click again in the square located inside the subcatchment. Assign "100" without quotes to the field *outlet*. This will indicate that the water produced in this subcatchment will reach the first junction. Close the window. A dotted line will appear between the square and the junction.

Now a raingage will be created. Click on the button located above the watershed button. It is similar to a cloud raining. Locate the raingage as shown below.

😚 EPA SWMM 5 - PatA	veStor	m.inp				- - X			
File Edit View Project	Report	Window Help							
D 🚅 🖬 🎒 🖻 👭		?{ 🚟 🗖 Σ 😭 🖶 📐	LZ⊕QQI						
Data Map Categories		Study Area Map	Rain Gage 1	Rain Gage 1 🕅 🕅					
Options	0		Property	Va	lue				
Meteorology	∇		Name	1					
E Hydrology	\diamond		X-Coordinate	-66	3.78				
Subcatchments	日		V Coordinate	70	no 74				
Aquifers	н		Description	12	20.71				
Hydraulics Nodes	G		Description	1					
Junctions	0	Q	lag	1					
Outfalls			Data Source	TIM	/ESERIES				
Dividers		1111000	TIME SERIES:						
± Links	Т		- Series Name	typ	pell				
- Transects			- Data Format	CL	MULATIVE				
- Controls			- Time Interval	1:0	00				
t Curves ✓			DATA FILE:						
			- File Name						
+ - A			- Station No.						
			- From Date						
Rain Gages			To Date						
1			- TO Date						
				Press F1 for	Help	11			
Auto-Length Off CFS		100% X,Y: 1235.39, 7178.63							
🐉 start 🔰 😂 🧕	0	» 🙆 Inbox - Microsoft Ou	E:\current files\CLAS	Getting Started with	😌 EPA SWMM 5	🧿 🗃 😻 🧐 🗞 📲 9:00 PM			

Use the selector from the main toolbar. Double click on the raingage to display its properties. Assign "1" without quotes to the name, description and tag fields. Click now on the series name. A drop-down menu will appear, select "Type II". Close the window. Return to the subcatchment and edit the properties, including selecting "cumulative" as the data format (the rain is presented in this file as accumulative volumes). Click on the raingage field. A drop down menu will appear, select 1. Close the window. (Have you saved the project recently?)

😚 EPA SWMM 5								- - X
File Edit View Pro	oject Rep	ort V	Vindow	Help				
0280	b M	> ?	(] 屦 [∧ द ⊕€(a д			
Categories Categories Categories Title Notes Options Meteorology Hydrology Hydrology Hydrology Curves Time Series Time Patterns Map Labels Time Series Time Series Time Series Time Series		?? <	Cl 🗱 E	 2 area Map Save Project As Save in: Barrier Map My Recent Documents My Documents My Computer My Network Places File Sa 	M10 storm sewer system desig sediment scour in pipes test.inp e name: PatAveStorm(in we as type: Input files (".IN		Save Cancel	
Auto-Length Off	CFS		100%	X,Y: -1919.87, 8263.7	77			
🥙 start	S 🖸 C	}	O Ir	nbox - Microsoft Ou…	E:\current files\CLAS	Getting Started with	😌 EPA SWMM S	🗿 🗳 💙 🧐 🗞 🏪 8:49 PM

Go back to the subwatershed and make sure that the raingage 1 is selected

😚 EPA SWMM 5 - PatAv	veStor	m.inp					- - X		
File Edit View Project I	Report	Window	Help						
D 🚅 🖬 🎒 🐴 🛤		?{] [LC+QQI					
Data Map	0	Stud	ly Area Map						
Categories	17			Sub	atchment 1001				
Options 📐				Bro	erty	Velue			
Hvdrology				Nam	9	1001			
Rain Gages				X-0	ordinate	394.74			
Subcatchments	L			× o	ordinata	-354.14			
- Hydraulics				1-0	winkles	6356.65			
E Nodes				Des	ripuori	1001			
- Junctions			0	Tag		1001			
Dividers				Rain	gage	1			
Storage Unit			attith	Ut Out	rt	100			
E-Links			115-11 CIN	Area		1.067			
Pumps	1	4	~~//////////////////////////////	Widt	n	98.3			
- Orifices			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ope	0.084				
			% In	perv	54				
				N-Im	perv	0.040			
+ - 4				N-Pe	rv	0.410			
• д Al				Dsto	re-Imperv	0.25			
Subcatchments				Dsto	re-Perv	0.50			
1001				%Ze	ro-Imperv	25			
1011				Sub	area Routing	OUTLET			
1021				Infilt	ation	HORTON			
				Gro	ndwater	NO			
				Lan		0			
				Curk	Length	0			
				Guix	Longar				
						Press F1 for Help			
Auto-Length Off CFS		100%	X,Y: 2621.04, 8681.14	8					
🏄 start 🛛 🙆 🧕	C	» 🔘 Ir	nbox - Microsoft Ou	E:\current files\CLA5	Getting Started with	😌 EPA SWMM 5	🗿 🗳 💙 🧐 🗞 🏪 9:19 PM		

Now you have everything connected and can continue with the second subcatchment. It is recommended that you draw each element separately. Draw the second subcatchment a little displaced to the right without touching the previous watershed or the junction 100. The screen below shows the drawing area after drawing the second watershed. Complete the information using the information in Table 1. Also use the raingage 1 for this watershed. You will not be able to assign the outlet information at this moment.

😽 EPA SWMM 5 - PatA	veStor	m.inp				. 3 X
File Edit View Project	Report	Window Help				
D 🚅 🖬 🎒 🖻 👭		?() 🖂 🖾 🗹 📾 💽	$\land \square \square \oplus \square \oplus \square \blacksquare \blacksquare$			
Data Map	0	😚 Study Area Map				
Categories			Subcatchmer	nt 1002		
Options	0		Property		Value	
Meteorology			Name		1002	
Hydrology Dais Course	\diamond		X-Coordinate		912.29	
Subcatchments	H		Y-Coordinate		6319.88	
Aquifers			Description		1002	
E Hydraulics	G		Tag		1002	
	ň	Q	Reinrege		4	
Outfalls		<u>.</u>				
Dividers	M	ATTTA .	Couler			
	T	ILLETTS TH	Area		1.087	
Transects	1	- <u>V</u>	Width		74.5	
Controls			% Slope		0.093	
H Guality H Curves ✓			% Imperv		54	
			N-Imperv		0.10	
• • •			N-Perv		0.410	
			Dstore-Imperv		0.25	
Subcatchments			Dstore-Perv		0.50	
1001			%Zero-Imperv		25	
1002			Subarea Routi	ng	OUTLET	
			Infiltration		HORTON	
			Groundwater		NO	
			Land Uses		0	
			Curb Length		0	
						2
				P	ress F1 for Help	1.
Auto-Length Off CFS		100% X,Y: 11853.09, 5575.9	16			
🛃 start 🔰 🥭 🧕		🦥 🙆 Inbox - Microsoft Ou	E:\current files\CLAS	🔄 👜 Getting Started with	😌 EPA SWMM 5	🔘 🚔 💙 🧐 🗞 👫 9:03 PM

Select the junction button and draw the junction 101. This junction invert elevation is located at 769 ft and has a maximum depth of 10 ft. The 0.5 ft inlet and outlet invert offset depths account for the pipe elevation off the bottom of the junction itself. Close the window. Return to the subcatchment 1011 and update the outlet information. Assign to the outlet field "101" without the quotes.

😚 EPA SWMM 5 - PatAv	veStor	m.inp					_ 2 ×		
File Edit View Project	Report	Window	Help						
D 🚅 🖬 🎒 🖻 👭		?{] [▷ Z ⊕ Q Q Z					
Data Map	0	Stuc	ly Area Map						
Categories		-			Junction 101				
Title/Notes					Property	Value			
	∇				Name	101			
😑 Hydrology	$\mathbf{\dot{\diamond}}$				X-Coordinate	2704 51			
Rain Gages	Ě				X-Coordinate	6711.19			
Aquifers					Deserviction	404			
Hydraulics	G				Tex	101			
Junctions	ā		Q		rag	101			
- Outfalls					Intiows	NO			
- Dividers			TTTT		Invert El.	769			
±-Links	Т		IIII TILS TIM		Maximum Depth	10			
Transects	-	-	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	Initial Depth	Initial Depth	0			
Controls			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Surcharge Depth	0			
E Curves					Ponded Area	0			
+ - 4									
r ⇒ ≜↓									
Junctions									
100									
101									
						Press F1 for Help	1		
Auto-Length Off		100%	X Y: 2671 12 6711 19						
Hastoria Cis		»	A,	Concernant and a second					
📑 stant 😕 🕒			nbox - Microsoft Ou	E:(current files)CLA	Getting Started with	TEPA SWMM 5	9:05 PM		

To create the conduit between the junctions 100 and 101, select the seventh button in the SWMM elements toolbar. Click on the junction 100 and in the junction 101 to create the pipe. Use the selector. Double click on the conduit to display the properties. You can also click on the little yellow hand located on the properties window. Assign "1000" without the quotes to the name, description and tag field. Use Table 3 to complete the information of the conduit. Now create the last watershed using the watershed button and use the information from Table 1 to complete the required data.

😚 EPA SWMM 5 - PatAv	eStor	m.inp					. 3 🗙
File Edit View Project I	Report	Window	Help				
D 🚅 🖬 🎒 🐴 🛤		?{] [▶ Z ⊕ Q Q E	(
Data Map	0	Stud	ly Area Map				
Categories					Conduit 1000		
Meteorology	0				Property	Value	
🕀 Hydrology	⊳ ♦ E				Name	1000	
Rain Gages					Inlet Node	100	
Aquifers					Outlet Node	101	
Hydraulics	н				Description	1000	
Junctions	G				Tag	1000	
- Outfalls	0				Shape	CIRCULAR	
Dividers	⊴		- The State	mmm	Length	300	
E Links	\boxtimes		THE HAD		Roughness	0.013	
Conduits	T				Inlet Offset	0.5	
- Orifices					Outlet Offset	0.5	
Weirs					Init. Flow	0	
Outlets					Entry Loss Coeff.	0	
				Exit Loss Coeff.	0		
• • <i>4</i>					Ava Loss Coeff	-	
* * <u>2</u>					Flan Gate	NO	
Conduits					Thep Outo	140	
						Press F1 for Help	
Auto-Length Off CFS		100%	X,Y: 2804.67, 6861.44				
🐉 start 🔰 🙆 🧕	6	** 🗿 Ir	nbox - Microsoft Ou…	E:\current files\CL4	AS Betting Started with	😌 EPA SWMM 5	0 5 0 9 3 9:10 PM

In this example, another pipe was used below the last subcatchment and before the outfall. A new junction was installed to allow all three subcatchment flows to join clearly before the outfall.

😚 EPA SWMM 5 - PatAv	eStor	m.inp						- - X
File Edit View Project F	Report	Window.	Help					
D 🚅 🖬 🎒 🖪 👭		?{] 🔤 [$\triangleright \mathbf{Z} \oplus \mathbf{Q} $	X			
Data Map Categories Title/Notes Options B Meteorology Hydrology Hydrology Hydrology Hydrology Hydrology Hydraulics Junctions Junctions Outfalls Dividers Storage Unit Links Conduits Pumps Orifices Weirs Conduits 1000 1003		Stur	iy Area Map		Conduit 1 Property Name Inlet Node Outlet Node Descriptio Tag Shape Length Roughnes Inlet Offse Outlet Offse Outlet Offse Outlet Offse Exit Loss Flap Gate	003 le	Value 1003 102 103 1003 1003 003 003 003 003 003 003 0003 0.5 0 </th <th></th>	
Auto-Length Off CFS		100%	X,Y: 2370.62, 8363.94					
🐉 start 🔰 🧭 🧕	e	" 💽 I	nbox - Microsoft Ou	E:\current files	CLAS	👜 Getting Started with	😌 EPA SWMM S	🔟 🚔 💟 😕 🗞 🏪 9:37 PM

The last Junction will be modeled as an outfall. Select the fourth element on the SWMM elements toolbar. The outfall element is located below the junction element. Display its properties. Assign "103" without quotes in the name, description and tag fields. Assign an invert elevation of 745 ft. There is no tide gate. It is modeled as a free discharge. The last element is the pipe1003, create this element and update the information using Tables 1, 2 and 3.

The rain file used with the raingage is a type II cumulative distribution for a 6.9 inch rain, the "25-yr" recurrence storm for Birmingham. Different files are needed for each rain depth. A set of standard rain files are located on the class web site at: <u>www.eng.ua.edu/~rpitt</u> under classes. The files can be modified using Excel. The files are ascii format (*.txt). Make sure the format is correct. Some problems with Excel is that the SWMM data format MM-DD-YYYY is not available, and Excel "automatically" converts them to MM/DD/YYYY. The replace function does not work, as the format is set. If the "normal" format for the cell is used, the "negative" signs transform the values. In many cases, quotes are also placed on each line, further confusing SWMM. It is best to multiply the rain depths in Excel, and save as a text file. Then open the file in Notepad and then do a "replace all" command to change the date format. Finally, save the file before importing into SWMM. The same rain gage and rain event is used for each subcatchment in this example, but it is possible to have different rain gages to reflect varying rain conditions throughout an area.

At any time, it is possible to press the F1 key for context-sensitive help.

😂 EPA SWMM 5 - PatAveS	torm.inp	💕 EPA SWMM Help			
File Edit View Project Rep	ort Window Help				
D 🛩 🖬 🎒 🖻 🖊	🕨 🗅 🖓 🖾 🖾 🖓	Hide Back Forward Print Options			
Data Map	🗢 😽 Study Area M	Contents Index Search	Subcatchment P	Properties 🔊 🛞	
Categories		표 📚 Introducing EPA SWMM	Name	User-assigned subcatchment name	
Meteorology Hydrology Rain Gages	7	SWMM's Main Window Working with Projects Working with Dipects Working with Dipects	X-Coordinate	Horizontal location of the subcatchment's centroid on the study area map. If left blank then the subcatchment will not appear on the map.	
- Subcatchments			Y-Coordinate	Vertical location of the subcatchment's centroid on the study area map. If left blank then the subcatchment will not appear on the map.	
Nodes	2	 Interface Files 	Description	Optional description of the subcatchment	
Outfalls	2)	 Image: Beference Image: Measurement Units 	Tag	Optional label used to identify or categorize the subcatchment	
Storage Unit	3 1772	 Diject Properties Rain Gage Properties 	Rain Gage	Name of the rain gage associated with the subcatchment	
Conduits 1	r IIII	Subcatchment Properties Aquifer Properties	Outlet	Name of the node or subcatchment which recieves the subcatchment's runoff	1
Orifices	~~~	2 Junction Properties 2 Outfall Properties	Area	Area of the subcatchment (acres or hectares)	
- Weirs Outlets		 ? Flow Divider Properties ? Storage Unit Properties 	Width	Characteristic width of the subcatchment (feet or meters)	
		Conduit Properties	% Slope	Average percent slope of the subcatchment	
+ - 4		Pump Properties Orifice Properties	% Imperv	Percent of land area which is impervious	
tar ♣ Ag↓ Subcatchments		Weir Properties Outlet Properties	N-Imperv	Manning's N for overland flow over the impervious portion of the subcatchment	
1001 1011		 ? Map Label Properties 	N-Perv	Manning's N for overland flow over the pervious portion of the subcatchment	
1021			Dstore-Imperv	Depth of depression storage on the impervious portion of the subcatchment (inches or millimeters)	
			Dstore-Perv	Depth of depression storage on the pervious portion of the subcatchment (inches or millimeters)	
			% Zero-Imperv	Percent of the impervious area with no depression storage	
			Subarea Routing	Choice of internal routing of runoff between pervious and impervious areas: IMPERV pervious to impervious PERV impervious to pervious	
Auto-Length Off CFS	100% X,Y: 118	36.39, 5041.74			
🦺 start 🛛 🙆 🖸 🕼	🗿 🎽 🔟 Inbox - Micro	os 🏾 🖄 E:\current file 🖓 Getting St	arte 🛛 🚷 EPA SWMM	5 🔮 EPA SWMM Help 🛛 🔂 🕄 🔍 🔍 🏷 🔩	9:13 PM

The details of the final SWMM5 file can be observed under *project/details* in the main menu. The following is the final entry file after adding all the data.

[TITLE]									
[OPTIONS] FLOW_UNITS INFILTRATION FLOW_ROUTING START_DATE START_TIME REPORT_START_TIME END_DATE END_TIME DRY_DAYS WET_STEP DRY_STEP DRY_STEP ROUTING_STEP REPORT_STEP ALLOW_FONDING DYNWAVE_METHOD COURANT_FACTOR NORMAL_FLOW_LIM LENGTHEN_CONDUT	TE ME ITED TS	CFS HORTON KW 01-01- 00:00: 01-01- 00:00: 00:00: 00:30: 01:00: 00:05: 00:05: NO EULER 0.75 YES NO	2003 00 2003 00 2003 00 00 00 00 00						
[RAINGAGES] ; ;Name	Timese File	eries/	Source Name	Format/ Station	RecdFreq/ RecdIntvl				
1	TIMES	ERIES	TypeII69	CUMULATIVE	0:30				
[SUBCATCHMENTS] ; ;Name	Rainga	age	Outlet	Total Area	Pcnt. Imperv	Width	Pcnt. Slope	Curb Length	
; 1001 1011 1021	1 1 1		100 101 102	1.067 1.087 1.431	54 54 54 54	98.3 74.5 109	0.084 0.093 0.072	0 0 0	;1001 ;1011 ;1021

[SUBAREAS] ;Subcatchment	N-Imperv	N-Perv	S-Imperv	S-Perv	pctZERO	RouteTo			
;									
1001	0.040	0.410	0.25	0.50	25	OUTLET			
1011	0.10	0.410	0.25	0.50	25	OUTLET			
1021	0.10	0.410	0.25	0.50	25	OOLTEL.			
[INFILTRATION]									
;Subcatchment	MaxRate	MinRate	Decay	Regen	MaxInfil				
;	1	0 1	0 002	0 001	0				
1011	1	0 1	0.002	0 001	0				
1021	1	0.1	0.002	0.001	Ő				
[JUNCTIONS]									
;	Invert	Max.	Init.	Surcharge	Ponded				
;Name	Elev.	Depth	Depth	Depth	Area				
;	701	10	•						
101	769	10	0	0	0	• 1 0 1			
102	753	10	0	õ	Ő	;102			
[OUTFALLS]									
;	Invert	Outfall	Stage/Ta	able					
;Name	Elev.	Type	Time Se:	ries					
;	745	EDEE	NO 102						
103	/45	FREE	NO ;103						
[CONDUITS]									
;	Inlet	Outl	Let		Manning	Inlet	Outlet	Init.	
;Name	Node	Node	9	Length	N	Height	Height	Flow	
;									
1000	100	101		300	0.013	0.5	0.5	0	;1000
1001	101	102		300	0.013	0.5	0.5	0	;1001
1003	102	103		100	0.013	0.5	0.5	0	;1003
[VCECETONC]									
[ASECITONS] •Link	Tune	Geom1	Geom?	Geom3	Geom4				
;									
1000	CIRCULAR	1	0	0	0				
1001	CIRCULAR	1	0	0	0				
1003	CIRCULAR	1	0	0	0				
[INFLOWS]				C • • • • • •					
; Nodo	Daramator	Time	Sorios	(Magg	Conversion				
;									
,									
[DWF]									
;		Ave	rage Time	e					
;Node	Parameter	Valu	ie Pati	terns					
;									
ודדתקן									
:Node	Unit Hydro	ograph Sewe	er Area						
;									
[TIMESERIES]									
;Name	Date	Time	Value						
;				-					
·Tune II 6 9 inch	rain								
Type II 0.5 Inch TypeII69	1-1-2003	0.00.00	0						
TypeII69	1-1-2003	0:30:00	0.0370185						
TypeII69	1-1-2003	1:00:00	0.0750375						
TypeII69	1-1-2003	1:30:00	0.114057						
TypeII69	1-1-2003	2:00:00	0.1550775						
TypeII69	1-1-2003	2:30:00	0.1970985						
TypeII69	1-1-2003	3:00:00	0.24012						
TypeII69	1-1-2003	3:30:00	0.286143						
TypeII69	1-1-2003	4:00:00	0.334167						
TypeII69	1-1-2003	4:30:00	0.384192						
TypeII09	1-1-2003	5.30.00	0.4372103						
TypeII69	1-1-2003	6:00.00	0.5512755						
TypeII69	1-1-2003	6:30:00	0.6133065						
TypeII69	1-1-2003	7:00:00	0.68034						
TypeII69	1-1-2003	7:30:00	0.752376						
TypeII69	1-1-2003	8:00:00	0.8314155						
TypeII69	1-1-2003	8:30:00	0.9174585						
TypeII69	1-1-2003	9:00:00	1.0135065						
TypeII69	1-1-2003	9:30:00	1.122561						
TypeII69	1-1-2003	10:00:00	1.248624						
TADEITEO	1-1-2003	11.00.00	1 600011						
TypeII69	1-1-2003	11:30.00	1.9559775						
TypeII69	1-1-2003	12:00:00	4.5792885						
TypeII69	1-1-2003	12:30:00	5.0755365						

TypeII69	1-1-2003	13:00:00	5.332665
TypeII69	1-1-2003	13:30:00	5.5157565
TypeII69	1-1-2003	14:00:00	5.6598285
TypeII69	1-1-2003	14:30:00	5.7858915
TypeII69	1-1-2003	15:00:00	5.894946
TypeII69	1-1-2003	15:30:00	5.9899935
TypeII69	1-1-2003	16:00:00	6.0760365
TypeII69	1-1-2003	16:30:00	6.1540755
TypeII69	1-1-2003	17:00:00	6.2261115
TypeII69	1-1-2003	17:30:00	6.2921445
TypeII69	1-1-2003	18:00:00	6.355176
TypeII69	1-1-2003	18:30:00	6.4142055
TypeII69	1-1-2003	19:00:00	6.469233
TypeII69	1-1-2003	19:30:00	6.521259
TypeII69	1-1-2003	20:00:00	6.571284
TypeII69	1-1-2003	20:30:00	6.619308
TypeII69	1-1-2003	21:00:00	6.6643305
TypeII69	1-1-2003	21:30:00	6.7083525
TypeII69	1-1-2003	22:00:00	6.749373
TypeII69	1-1-2003	22:30:00	6.7903935
TypeII69	1-1-2003	23:00:00	6.829413
TypeII69	1-1-2003	23:30:00	6.867432
TypeII69	1-2-2003	0:00:00	6.9

[REPORT] CONTROLS NO

[COORDINATES]

Node	X-Coord	Y-Coord
100	567.61	6560.93
101	2704.51	6711.19
102	6060.10	7262.10
103	6944.91	7262.10
[VERTICES] ;Link	X-Coord	Y-Coord
<pre>;Link [Polygons] ;Subcatchment 1001 1001 1001 1001 1001 1001 1001 10</pre>	X-Coord -851.42 -884.81 -934.89 -984.97 -1068.45 -1135.23 -1202.00 -1268.78 -1202.00 -1268.78 -1202.00 -1101.84 -984.97 -818.03 -584.31 -400.67 -183.64 50.08 116.86 113.56 133.56 133.56 133.56 133.56 133.64 250.42 400.67 417.36 383.97 367.28 333.89 250.42 183.64 -267.11 -634.39 -918.20 550.92 567.61 584.31 651.09 751.25	Y-Coord 6510.85 6444.07 6393.99 6327.21 6260.43 6176.96 6126.88 6060.10 6076.79 6110.18 6126.88 6160.27 6177.96 6777.96 6777.96 6744.57 6711.19 6661.10 6594.32 6494.16 6427.38 6410.68 6327.21 6310.52 6277.13 6277.13 6277.21 6310.52 6277.13 6277.21 6310.52 6277.13 6277.25 6143.57
1011	133.56	6026.71
1011	116.86	6026.71

1011	116.86	6026.71
1011	16 69	6026 71
1011	160.05	6026.71
1011	-130.23	0020.71
1011	-367.28	6026.71
1011	-534.22	6026.71
1011	-667.78	6026.71
1011	-801.34	6026.71
1011	-884.81	6043.41
1011	-951 59	6043 41
1011	-951.59	5076 62
1011	-834.72	5976.63
1011	-767.95	5909.85
1011	-684.47	5809.68
1011	-601.00	5759.60
1011	-534.22	5759.60
1011	-517 53	5759 60
1011	434.06	5755.00
1011	-434.00	5709.52
1011	-317.20	5659.43
1011	-166.94	5642.74
1011	-33.39	5642.74
1011	116.86	5626.04
1011	233.72	5609.35
1011	450 75	5609 35
1011	100.70 E04 21	ECOD 2E
1011	364.31	5609.55
1011	818.03	5642.74
1011	1051.75	5726.21
1011	1302.17	5809.68
1011	1385.64	5859.77
1011	1602.67	5976.63
1011	1619.37	5976.63
1011	1769 62	6043 41
1011	1006 10	6110 10
1011	1886.48	6110.18
1011	1986.64	6126.88
1011	2070.12	6193.66
1011	2136.89	6260.43
1011	2186.98	6293.82
1011	2237 06	6343 91
1011	2270 45	6410 69
1011	2270.43	6410.00
1011	2320.53	6460.//
1011	2337.23	6477.46
1011	2387.31	6494.16
1011	2470.78	6560.93
1011	2487.48	6560.93
1011	2504.17	6661.10
1011	2487 48	6727 88
1011	2407.40	6721.00
1011	2470.78	6/61.2/
1011	2454.09	6794.66
1011	2454.09	6811.35
1011	2353.92	6878.13
1011	2270.45	6944.91
1011	2253 76	6928 21
1011	2020 03	689/ 82
1011	2020.05	0004.02
1011	2003.34	6894.82
1011	1886.48	6928.21
1011	1836.39	6944.91
1011	1702.84	6944.91
1011	1452.42	6944.91
1011	1368.95	6928.21
1011	1268 78	6911 52
1011	1101 04	6011 52
1011	1101.04	0911.52
1011	951.59	6911.52
1011	834.72	6928.21
1011	701.17	6861.44
1011	550.92	6828.05
1011	550.92	6811.35
1011	550.92	6811.35
1021	2487 48	6978 30
1021	2520 97	6004 00
1021	2520.07	0994.99
1021	2570.95	6978.30
1021	2621.04	6978.30
1021	2704.51	6994.99
1021	2804.67	7011.69
1021	2971.62	7045.08
1021	3088 48	7078 46
1021	2420.07	7170 62
1001	JIJJ.U/	1210.03
1021	3005.93	1228.71
1021	3856.43	7295.49
1021	4173.62	7295.49
1021	4307.18	7295.49
1021	4373.96	7295.49
1021	4574 29	7295 /9
1001	1017.20	7205 42
1001	400/.08	1295.49
1021	4791.32	7312.19
1021	4841.40	7312.19
1021	5075.13	7345.58
1021	5375.63	7378.96
1021	5509 18	7378 96
1021	5502 65	7262 27
1001	JJ92.03	1302.21
TUZT	ეს∠ს.∪4	1328.88

1021	5776.29	7245.41		
1021	5809.68	7178.63		
1021	5809.68	7011.69		
1021	5792.99	6928.21		
1021	5742 90	6727 88		
1021	5709 52	6644 41		
1021	5626 04	6460 77		
1021	5626.04	6400.77		
1021	55/5.96	6427.38		
1021	5475.79	6393.99		
1021	5375.63	6393.99		
1021	5275.46	6393.99		
1021	5208.68	6377.30		
1021	5158.60	6360.60		
1021	5075.13	6310.52		
1021	4974 96	6227 05		
1021	4858 10	6110 18		
1021	4004 71	6002.40		
1021	4024.71	50053.45 5000 60		
1021	4257.10	5809.68		
1021	3856.43	5692.82		
1021	3606.01	5592.65		
1021	3422.37	5592.65		
1021	3055.09	5525.88		
1021	2938.23	5525.88		
1021	2704.51	5525.88		
1021	2353 92	5525 88		
1021	2120 20	5509 18		
1021	1752 92	5509.18		
1021	1660 45	5509.10		
1021	1010 70	5509.18		
1021	1218.70	5592.65		
1021	1135.23	5626.04		
1021	1135.23	5626.04		
1021	1151.92	5642.74		
1021	1235.39	5692.82		
1021	1335.56	5742.90		
1021	1402.34	5792.99		
1021	1485.81	5826.38		
1021	1636 06	5859 77		
1021	1719 53	5926 54		
1021	1060 70	5520.54		
1021	1053.70	5995.52		
1021	1953.26	6060.10		
1021	2136.89	6143.57		
1021	2337.23	6260.43		
1021	2420.70	6327.21		
1021	2520.87	6393.99		
1021	2554.26	6444.07		
1021	2621.04	6460.77		
1021	2704.51	6494.16		
1021	2838 06	6577 63		
1021	2871 45	6627 71		
1021	2021 27	6711 10		
1021	2021.37	6011 25		
1021	2754.59	6011.33		
1021	2687.81	6828.05		
1021	2604.34	6811.35		
1021	2420.70	7028.38		
[SYMBOLS]				
;Gage	X-Coord	Y-Coord		
1	-66.78	7228.71		
[BACKDROP]				
DIMENSIONS	0.00	0.00	10000.00	10000.00
UNITS	None			
FILE				
OFFSET	0 00	0.00		
SCALINC	0.00	0.00		
CHTTNR	0.00	0.00		

Now you can run the model. In the main toolbar, click the seventh button from the left. The symbol is a green triangle like a play button. If the run was successful, a window will be displayed showing the successful run label.

Observing the Results

It is possible to observe the results under *report/status* in the main menu. An example of the results follows.

😌 EPA SWMM 5 - Pa	tAveStor	n.inp			E E 🛛
File Edit View Projec	t Report	Window Help			
0 🗲 🖬 🎒 🖻	#	?(] 🔤 🗖 🖀 📄 🖹 🖂 🖻	÷ ଇ୍ ୍ ⊭		
Data Map	0	😌 Study Area Map			
Categories	- 🕅	👶 Status Report			- X I-01-2003 00:30:00
Options	0				
Meteorology		EPA STORM WATER MANAGEMENT	MODEL - VERSION	5.0E (Build 1/23/04)	
Hydrology Hydraulics	\diamond				
⊕ Quality ■	E	*****			
E Curves	H	Analysis Options			
Time Patterns	G	Flow Units	CFS		
Map Labels	0	Infiltration Method	HORTON		
	•	Flow Routing Method Starting Date	KW JAN-01-2003 00:00	0:00	
		Ending Date	JAN-02-2003 00:0	D:00	
	Т	Wet Time Step Dry Time Step	00:30:00 01:00:00		
		Routing Time Step	00:05:00		
		Report Time Step	00:30:00		
			22 . 22	2 2	
		Runoff Continuity	acre-feet	inches	
+ - 10		****			
★ # \$1		Total Precipitation Total Losses	0.321	1.074	
Title/Notes		Total Runoff	1.609	5.385	
	_	Final Storage	0.000	0.000	
		Continuity Error (%)	-1.409		v
<u> </u>					
Auto-Length Off C	FS 📄	100% X,Y: 5826.38, 2821.37			
🛃 start 🔰 🥭	0	🎬 🧕 Inbox - Microsoft Out 🤷 E:\c	urrent files\CLAS	😌 EPA SWMM 5	🛃 🧿 💟 🧐 🖏 🏪 3:12 PM

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0E (Build 1/23/04) _____

0.161

0.161 -1.409

0.538

```
* * * * * * * * * * * * * * * *
Analysis Options
* * * * * * * * * * * * * * *
Flow Units ..... CFS
Infiltration Method ..... HORTON
Flow Routing Method ..... KW
Starting Date ..... JAN-01-2003 00:00:00
Ending Date ..... JAN-02-2003 00:00:00
Wet Time Step ..... 00:30:00
Dry Time Step ..... 01:00:00
Routing Time Step ..... 00:05:00
Report Time Step ..... 00:30:00
* * * * * * * * * * * * * * * * *
                                  Volume
                                                   Depth
Runoff Continuity
                               acre-feet
                                                  inches
                               _____
* * * * * * * * * * * * * * * *
                                                 _____
                                2.061
0.321
1.609
0.000
0.161
                                                   6.900
Total Precipitation .....
                                                  1.074
5.385
0.000
Total Losses .....
Total Runoff .....
```

Initial Storage

Final Storage

Continuity Error (%)

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Transport Continuity	acre-feet	Mgallons
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	1.602	0.522
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	1.602	0.522
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	-0.003	

* * * * * * * * * * * * * * * * * *

Node Depth Summary

		Average	Maximum	Time of Max	Average	Total
Fraction		2			2	
110001011		Depth	Depth	Occurrence	Depth	Minutes
Courant		-1 -	-1 -		-1 -	
Node		Feet	Feet	davs hr:min	Change	Flooded
Critical		1000	1000	aayo mi.mim	onunge	1100404
JUNCTION	100	0.58	0.92	0 12:30	0.0045	0
0.00	100	0.00	0.92	0 12.00	0.0010	Ũ
JUNCTION	101	0.63	1.16	0 12:30	0.0060	0
0.00	101	0.00	1.10	0 12.00	0.0000	Ũ
JUNCTION	102	0.65	1.30	0 12:30	0.0069	0
0 00	102	0.00	1.00	0 12.00	0.0000	Ŭ
OUTFALL	103	0 00	0 00	0 00.00	0 0000	0
0 00	T00	0.00	0.00	00.00	0.0000	0
0.00						

_____ ___ Maximum Time of Max Maximum Time of Max Maximum Total Flow Occurrence Velocity Occurrence /Design Minutes Conduit CFS days hr:min ft/sec days hr:min Flow Surcharged _____ ___ 3.60e+00 0 12:30 11.38 0 12:30 0.37 1000 0 1001 6.31e+00 0 12:30 11.55 0 12:30 0.77 0 9.83e+00 0 12:30 14.61 0 12:30 0.98 1003 0

Analysis begun: Wed Apr 28 15:12:02 2004

Click on the plot icon (the 9th from the left on the top tool bar) and select the type of graph and location where viewing is desired. The following example has "Links" and "Depth" selected in order to plot the depth of flow in the pipes to visually observe if any pipes surcharged. After these two selections are made, use the selection arrow tool to click on the links desired to be displayed, and click on the "+" icon in the selection box. Repeat for each link desired, the click OK for the plot.

This plot shows that the most downstream pipe (link 1003) has the deepest flow and is at about 0.8 ft, less than then the 1 ft pipe diameter. Therefore, no surcharging occurs in these pipes. A similar plot can be created for the nodes which would be especially important if surcharging does occur to see how far the water rises in the manholes. Recall that the offset depth for the inlets and outlets for the nodes was 0.5 ft in this example, so the depth can be as great as 1.5 ft before surcharging occurs.

Another option is to show the results in a profile. In the main menu, select *Report/graph/profile*. The following figure shows the profile dialog box, with the start and end node selected. After they are selected, the "find path" button is clicked and the links in the profile are automatically displayed. The click OK to display the profile.

The animator option is used to display how the profile changes during the simulation. The static plot shows the depths at the designated time indicated in the lower right-hand corner of the figure. In the above case, water is shown for the 0.5 ft in the bottom of each node, but none in the pipe. In order to operate the animator, select the drop down "view/toolbars/animator" option, as indicated below.

The lower bar in the animator increases or decreases the speed of the simulation. The left arrow rewinds the simulation and the right button plays it. The above figure shows the depth at 14:00, with water flowing through the system. It is difficult to see the water depth in the plotted pipes because of the thinness of the pipes. However, it is easy to see surcharging conditions during excessive rains.

The results can be observed also in a table. Go to *Report/table/by variable* in the main menu. Select as object category: links and as variable: flow. On the map, click conduit 1000, now click the plus sign in the *table by variable* window. Now click on the conduit 1001 and click the plus sign to add it to the table. Click OK and the results will be displayed in a table.

Long-term Continuous Simulation

It is possible to use a variety of rain files with SWMM5. The following illustrates the use of a four month period of rains monitored at the University of Alabama for this site. The first step is to import the new rain file (4 months of 5 minute observations).

🛞 EPA SWMM 5 - PatAv	veStor	rmlongrain.inp	_ 2 🛛
File Edit View Project	Report	t Window Help	
D 🗲 🖬 🎒 🖻 👭		?(] 輕 ▥ ∑ 留 唱 ▶ ▷ ८ ↔ ④ 즉 其	
Data Map Categories Title/Notes Options Meteorology Hydrology Hydraulics © Quality Curves Time Series Time Patterns Map Labels		Study Area Map Time Series Editor Name Tusc4mo Description	08-23-2002 00:30:00
	密 T	Open a Time Series Look in: M10 stom sewer system design	702 ding Univers 10 <
Auto-Length Off CFS		100% X,Y: -1853.09, 3255.43	
🐉 start 🛛 😂 🧕	0	🐣 🧿 Inbox - Microsoft Ou 🏼 💁 E: (current files) (CLAS 🖉 Getting Started with 😪 EPA SWMM 5	📑 💟 🧐 🗞 🏪 10:42 PM

👶 EPA SWMM 5 - PatAv	/eStor	mlongrain.inp					
File Edit View Project	Report	Window Help					
D 🗲 🖬 🎒 🖻 👭		?{] 🔤 🗖 🗅 😭 🐂 🗼	⊳द⊕Q्घ				
Data Map Categories Title/Notes Options Meteorology Hydrology Hydraulics Quality E Curves Time Series Time Series Map Labels		Study Area Map	Time Series Editor Name Tusc4mo Description non MIB Building Univ	rersity of Alabama Tus: Value	caloosa 082302 1217		08-23-2002 00:30:00
	⊗	114123	8-23-2002 15:3	5:00 0		vv	
	Т		8-23-2002 15:4	0:00 0	Loa	id	
			8-23-2002 15:4:	5:00 0			
			8-23-2002 15:50	0:00 0	<u>3</u> av	e	
			8-23-2002 15:5	5:00 0			
			8-23-2002 16:0	0:00 0	0	к	
Time Series			8-23-2002 16:0	5:00 0	Car	ncel	
Typell			8-23-2002 16:11	0:00			
			8-23-2002 16:1:	5:00 0	🖌 🚽	dip	
Auto-Length Off CFS		100% X,Y: -1853.09, 3255.43	3				
🐉 start 🔰 🙆 🧕	6	Inbox - Microsoft Ou	E:\current files\CLAS	Getting Started	with 😽 EP4	A SWMM 5	🖆 🧿 💟 🧐 🗞 🏪 10:42 PM

Next, the rain gage needs to be edited for the correct file name and file type. Again, this is a time series of volume data, collected at 5 minute intervals.

👶 EPA SWMM 5 - Po	atAveSto	rmlongrai	in.inp				
File Edit View Proje	ct Report	: Window	Help					
0 🗲 🖬 🎒 🖻	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	?{] 🔤 [$\triangleright \mathbf{Z} \oplus \mathbf{Q} $	Ħ			
Data Map Categories		Stue	ly Area Map					
Title/Notes					Rain Gag	e 1		
Options Meteorology					Property		Value	
Hydrology					Name		1	
Rain Gages					X-Coordin	ate	-66.78	
Aquifers					Y-Coordin	ate	7228.71	
Hydraulics					Descriptio	n		
Guality			G		Tag			
Time Series					Data Sour	ce	TIMESERIES	
- Time Patterns			ATTIN	HHHA	TIME SERI	ES:		
Map Labels	127		HIMIN (1)	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	- Series N	lame	Tusc4mo	
	1	_	~~///////////////////////////////	11241111	- Data Fo	rmat	VOLUME	T
			~	- 44/////	- Time Int	erval	0:05	
					DATA FIL			
					- File Nam	ie		
+ - 4					- Station	 No		
± ∓ ∳1					- From Da	te		
Rain Gages					- To Date			
1					- To Date			
					-		Press F1 for Help	
Auto Length Off	7	100%	V V- 0497 49, 6000 00	8				
Auto-Length Off		100%	A,1. 2407.40, 0393.99					
🥶 start 🛛 😕	00	" <u>O</u> I	nbox - Microsoft Ou	E:\current files		💾 Getting Started with	😌 EPA SWMM 5	📅 🧕 💟 🧐 🗞 🏪 10:43 PM

It is also necessary to edit the simulation options to reflect the new start and end dates for the simulation.

😚 EPA SWMM 5 - PatA	veStor	mlongrain.inp				
File Edit View Project	Report	Window Help				
D 🚅 🖬 🎒 🖻 🏘		?{] 🔤 🛅 Σ 😭 🐂 📗	► Z + Q Q Z			
Data Map Categories TitleNotes Options Meteorology Hydrology Rain Gages Subcatchments Aquifers B Quifers Curves Time Series Time Patterns Map Labets	0° 20 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0	Study Area Map	Simulation Options Oeneral Dates Time Steps Date Date Start Analysis on 08-3 Start Reporting on 08-3 End Analysis on 12-1 Antecedent 0 Dry Days 0	рупатіс Wave Files (M-D-Y) Time (H:M) 23-2002 <u>л</u> 00:00 <u>л</u> 23-2002 <u>л</u> 00:00 <u>л</u> 7-2003 <u>л</u> 00:00 <u>л</u> - - - - - - - - - - - - -		08-23-2002 00:30:00
Auto-Length Off CFS		100% X,Y: -1786.31,777	9.63	1 months		
🛃 start 🔰 😂 🚺		🐃 🧕 Inbox - Microsoft Ou	E:\current files\CLAS	Getting Started with	😌 EPA SWMM 5	📑 🧿 💟 🧶 🗞 🏪 10:44 PM

It takes appreciably longer to run this long simulation.

Again, the plotting options need to have the observation locations selected, but using the selector arrow in SWMM to click on the appropriate link, and then clicking on the "+" sign. Multiple elements of the same type can be selected for plotting together.

"Hello World" Pat Avenue Sanitary Drainage Design Example

It is easy to also design a sanitary drainage system using SWMM5. In this example, we will use the same location. The sanitary sewer is another pipe located on the other side of the road, 3 ft below the storm sewer pipe. Three pipes and three upper manholes are required in this design. Sewage discharges from the residents in the upper part of the street will be to pipe 2000. The following shows the location of the manholes and pipes in the design

The description of the sewage discharge and the subareas contribution is shown in Table 4.

Table 4. Sewage discharges and subareas

Junction (Node)	Area Served (ac)	# Apt. Buildings	Population (32 people / building)	Water Use (150 gal / day)	Daily Wastewater Flow (90% of	Sewage (cfs)
					water used)	
200	0.98	3	96	14400	12960	0.020
201	1.63	5	160	24000	21600	0.033
202	2.18	6	192	28800	25920	0.040
203	2.00	4	128	19200	17280	0.027

For this example, it was assumed that the buildings shown on the map are actually apartment buildings (in order to produce a suitable flow in the upper reaches for this example). On the average, there are 32 people per building with an average per-capita consumption of 150 gal/day. About 90% of the water used is discharged to the sanitary system. The total average discharge in each pipe varies from 0.02 to 0.04 cfs. The information of each junction is shown in Table 5.

Table 5. Pat Avenue Junction Information (Sanitary Design):

JUNCTION	Invert Elevation (ft)	Maximum Depth (ft)	Initial Depth (ft)	Surcharge Depth (ft)	Ponded Area (ft²)
200	807	13	0	0	0
201	788	13	0	0	0
202	766	13	0	0	0
203 (Outfall)	750	n/a	0	0	0

The invert elevation corresponds to the elevation of the bottom of the manhole. The maximum depth is the distance from the bottom of the junction to the ground surface. The surcharge depth is the additional water depth above the ground surface used to store water during surcharge conditions. The ponded area is the surface area of the water accumulated during the surcharge. The information for each conduit (pipe) is shown in Table 6.

CONDUIT	Shape	Diameter (ft)	Length (ft)	n Manning	Inlet invert height offset (ft)	
2000	Circular	1	200	0.013	0.5	
2001	Circular	1	300	0.013	0.5	
2002	Circular	1	300	0.013	0.5	

Table 6. Pat Avenue Conduit Information (Sanitary Design):

CONDUIT	Outlet invert height offset (ft)	Initial flow (cfs)	Entry loss coefficient	Exit loss coefficient	Average loss coefficient
2000	0.5	0	0	0	0
2001	0.5	0	0	0	0
2002	0.5	0	0	0	0

In this case, the fist pipe is shorter than the other pipes, but the initial diameter is the same at 1 ft. The main difference between the sanitary sewer design and the storm sewer design is that we don't need to calculate the total runoff generated during the storm event (unless it was a combined sewer). In our simple example, the input to the modeled sanitary sewer is the sanitary sewage discharged by the apartment building residents.

Creating the Project

Open a new project. In the data browser tab select the *Title/Notes* option. Assign the title to the project. Return to the data browser and double click on the *options* category. As in the storm sewer example, select the flow units in csf, and the routing model as kinematic wave. Click on the *dates* tab. Assume this simulation started on January 1, 2003 at 00:00. The analysis will end on January 2, 2003 at 00:00. Report the whole simulation. Assume that the number of antecedent dry days was 10 (long dry period, having a minimal effect on inflow and infiltration).

Click on the *Time Steps* tab. In this example, the rain file will not be included, leave the default value or 30 minutes. The dry weather processes is simulated, use 1 hour time step in this case. Select a 5-minute routing time step and a 15-minute reporting time step. The *dynamic wave* and *Interface files* tabs are not used. Click *ok* to accept the values.

Now you will import a time series describing the sanitary sewage discharges in the study area. In the data browser, select the *Time Patterns* option and in the properties area add a new series. In the name field, assign the name "patavam" without quotes and spaces. Select type *AM*. Describe the time pattern, for example "AM Pat Avenue Pattern". The following figure shows the 12 percentages of the average flow used before noon: 68, 57, 49, 75, 100, 132, 170, 208, 198, 151, 94, and 75. Create a second pattern called "patavpm" for the PM part of the day. The percentages are: 79, 81, 91, 98, 100, 102, 83, 85, 87, 79, 70, and 72. These values are the percentages of the basic average hourly flow value produced by the residents.

Time Pat	tern Edi	itor					
Name patavam			Туре АМ				
Descripti	on						
AM Pat	Avenue P	attern					
Multipliers	Multipliers						
12 AM	1 AM	2 AM	3 AM	4 AM	5 AM		
68	57	49	75	1	132		
6 AM	7 AM	8 AM	9 AM	10 AM	11 AM		
170	208	198	151	94	75		
	-						
OK Cancel Help							

Go to the main menu and select: *Project/defaults*. Click on the *Nodes/Links* tab. Assign 0 to the node invert and 300 ft to the conduit length. The pipes are circular with a roughness coefficient of 0.013. The flow units are in cfs and the routing model is kinematic wave. Click O.K. to accept the changes.

Now you can start to draw the pipes, nodes and outfall. Notice that in this case there are three pipes, three junctions and an outfall. Include all the required information using tables 4, 5 and 6. Start with the junctions and the outfall.

Double click on the first junction to display its properties. Rename the node as 200. Click on *inflows*. A window will appear. Select the *Dry Weather* tab. Select constituent as *Flow*, the average values is shown in table 4. This flow is 0.020 cfs for the first junction. Assign the time patterns for the AM and PM part of the day. Click OK. Complete the required information for this node. Create the other two nodes and the outfall. Fill in the required information from tables 4, 5 and 6. The outfall is *free* (again, there is no a tide gate at the end). Use the T button in the drawing elements to add text labels to the map and identify each element. The following figure shows the final sketch for the layout for the sanitary sewer design.

Check in the main menu, project/details that the input file is complete, You can also open your input file with any word processor. In this moment you are ready to run the program. Compare your file with the following text file:

[OUTFALLS]								
; ;Name	Invert Elev.	Outfall Type	Stage/Tal Time Ser:	ble ies				
203	750	FREE	NO					
[CONDUITS]	Inlat	011	-1_+		Manning	Inlet	Outlet	Init
,Name	Node	No	de	Length	N	Height	Height	Flow
2000	200	20	1	200	0.013	0.5	0.5	0
2001 2002	201 202	20	2 3	300	0.013	0.5	0.5	0
[XSECTIONS] ;Link	Туре	Geoml	Geom2	Geom3	Geom4			
2000	CIRCULAR	1	0	0	0			
2001 2002	CIRCULAR CIRCULAR	1 1	0	0	0			
[INFLOWS]								
; ;Node	Parameter	Ti	ne Series	Concen /Mass	Conversion Factor			
(DWF)								
; Node	Parameter	Av	erage Time lue Patte	erns				
;	ELOW		120 "" "	 " "natavam	" "natavom"			
201	FLOW	0.)33 "" "	" "patavam	" "patavpm"			
202 203	FLOW FLOW	0. 0.	040 "" " 027 "" "	" "patavam " "patavam	" "patavpm" " "patavpm"			
[RDII] ;Node	Unit Hydro	graph Se	wer Area					
;								
[PATTERNS] ;Name	Туре	Multipli	ers					
;AM Pat Avenue H patavam	Pattern AM	68 57 49	75 100 132 1	70 208 198	151 94 75			
;PM Pat Avenue Pa patavpm	PM	79 81 91	98 100 102 83	3 85 87 79	70 72			
[REPORT] CONTROLS NO								
[COORDINATES]	X-Coord	V-1	Coord					
200	699.52	55	16.69					
201	3688.39	54	53.10 73.61					
202	9157.39	53	57.71					
[VERTICES] ;Link	X-Coord	Y-	Coord					
[LABELS]	V-Coord	To	201					
413.35	5898.25	"2	0" "" "Aria	al" 10 0	0			
3386.33	5771.07	"2	01" "" "Aria	al" 10 0	0			
6359.30	5691.57	"2)2" "" "Aria	al" 10 0	0			
1669.32	5214.63	"P	ipe 2000" ""	"Arial"	10 0 0			
4642.29	4960.25	"P.	ipe 2001" ""	"Arial"	10 0 0			
1044.22	JU. JU	° P.	-be 2002	WIIGI.	TO 0 0			
[BACKDROP] DIMENSIONS	0.00	0.0	C	10000.00	1000	0.00		
UNITS	None							
FILE OFFSET	0 00	0 0	1					
SCALING	0.00	0.0	- D					

If everything looks fine, run the model. The results from the model should be similar to the following:

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0E (Build 1/23/04) Sanitary Sewer Design Example Pat Avenue Alex Maestre - University of Alabama ***** Analysis Options ********* Flow Units CFS Flow Routing Method KW Starting Date JAN-01-2003 00:00:00 Ending Date JAN-02-2003 00:00:00 Routing Time Step 00:05:00 Report Time Step 00:15:00 **** Volume Volume Flow Transport Continuity acre-feet Mgallons acre-feet 23.869 0.000 0.000 0.000 23.865 0.000 0.007 -0.011 ***** Dry Weather Inflow 7.778 Wet Weather Inflow 0.000 0.000 Groundwater Inflow 0.000 0.000 7.777 RDII Inflow External Inflow External Outflow 0.000 Initial Stored Volume ... Final Stored Volume 0.002 Continuity Error (%) **** Node Depth Summary ******* Average Maximum Time of Max Average Total Fraction

Node		Depth Feet	Depth Feet	Occu days	<pre>irrence hr:min</pre>	Depth Change	Minutes Flooded	Courant Critical
JUNCTION	200	0.78	0.93	0	07:05	0.0063	0	0.00
JUNCTION	201	1.04	1.50	0	07:00	0.0128	0	0.00
JUNCTION	202	1.34	1.50	0	04:00	0.0145	0	0.00
OUTFALL	203	0.00	0.00	0	00:00	0.0000	0	0.00

	Maximum	Time of Max	Maximum	Time of Max	Maximum	Total
Conduit	Flow	Occurrence	Velocity	Occurrence	/Design	Minutes
	CFS	days hr:min	ft/sec	days hr:min	Flow	Surcharged
2000	4.20e+00	0 07:05	13.04	0 07:05	0.38	0
2001	9.65e+00	0 07:00	13.97	0 06:05	1.00	120
2002	8.84e+00	0 10:40	11.94	0 20:05	1.07	560

Analysis begun: Sun Apr 25 20:12:34 2004 Analysis ended: Sun Apr 25 20:12:34 2004

The results show that the diameters of pipes 2001 and 2002 are not large enough to transport the flow (they surcharge). This pipes can be replaced by larger pipes (1.5 ft pipes will be used). The following figure shows the current results with pipes 1 ft in diameter.

The results after enlarging pipes 2001 and 2002 to the next largest commercial pipe size show that pipe 2002 only reaches 67% of the total capacity during the peak hour so the new design appears to be satisfactory. The following figure shows the flow depths at each node with pipes 2001 and 2002 enlarged to 2 ft in diameter.

References

http://www.epa.gov/ednnrmrl/swmm/beta_test.htm

US EPA, National Risk Management Research Laboratory, Office of Research and Development, (2002). SWMM Redevelopment Project Plan. Version 5. Water Supply and Water Resources Division.

James, W., W. Huber, R. Pitt, R. Dickinson, and R. James (2002). *Water Systems Models, Hydrology*. CHI, Guelph Ontario Canada. 347 pp.

Chow V., (1988). Applied Hydrology. McGraw Hill Book Co. - New York.